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On the basis of the second-moment balance equations, the influence of free 
convection on the intensity of turbulent transport in the boundary layer for 
various orientations of the flow and the surface around which the flow is 
occurring is studied. 

An essential characteristic of turbulent flow in a gravitational field is the fact that 
the turbulent flow is generated by various mechanisms: via the operation of thermogravita- 
tional forces and by a shift in the mean velocity. The way in which the thermogravitational 
forces influence the intensity of turbulent transport is to a great extent determined by 
the orientation of the system in the mass force field. The influence of the gravitational 
force on the characteristics of turbulence in horizontal and vertical layers has been dis- 
cussed in several papers (for example, [i-6]). An analysis of the effect of thermogravita- 
tional forces on the intensity of turbulent momentum and heat transport in the boundary 
layer for various orientations of the flow and the surface around which the flow is occur- 

ring is presented. 

i. Let us choose a coordinate system as shown in Fig. i, where the velocity vector 
of the average flow is directed along the x axis. In this case, the direction in which the 
gravitational force acts is characterized by the values of two angles: =, the angle between 
the vector g and its projection on the plane of flow; and y, the angle between the projec- 
tion of g on the Oxz plane and the z axis. In much the same way as in [i-6], the analysis 
is carried out starting from the balance equations for the second moments of the fluctua- 
tions in velocity and temperature, which, in the Boussinesq approximation, are of the form 
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where the gi are the components of the gravitational force vector: gx = g cos ~ sin y, 
gy = g sin ~, and gz = g cos ~ cos y. 
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a) b) ~ c) 

Fig. i. Orientation of the system in the grav- 
itational field. 

We shall now analyze the influence of the lift forces on the mechanism of turbulent 
transport at high turbulent Reynolds numbers under the condition that the gradients of the 
averaged velocities and temperatures along the normal to the surface be much larger than 
the derivatives along the other directions. To describe the dissipative terms in Eqs. (I)- 
(3), as well as the correlations between the pressure fluctuations and the derivatives of 
the velocity and temperature, we shall use the simple approximate relations [7-9]. 
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There are no terms which take the influence of thermogravitational forces into account 
[i] because introducing them makes the analysis we are making more complicated and requires 
more constants to be determined (without changing the results obtained significantly), 

If the distributions of the averaged velocity and temperature, as well as the scale 
of the turbulence are known, system (1)-(3) is a closed system of algebraic equations from 
which all of the pulsation moments may be determined: 

<u~u~}_~tj + OU 2 k E ~ / 2 (  I <u~" > - -  ~ 2 E ) 3 '  @ c E3/2 ~ - ~ -  g~ocosasin?<u~O'>=O, ( 4 )  

k Ei/2 ( ,2 2 E~ ~ c E 3/2 

2 1 < u .  > - -  3 ] 3 l 

E1/2 ( 2 E)-} c E3/2 
z <u'~ > - 3 3 z 

g,% s i n  ~ < u,~q' > = O, 

g[3~, cos  ~ cos  ~, < u ; e '  > = O, 

(5) 

(6)  

,2 OU _+_ k E,/2<u.u,y)_g~p(~u.~,>sino~ + < u ~ q ' > c o s m s i n ? ) = O ,  
<uy > Oy ' l 

OU kE 1/2 
< ">; > + - - - i - -  

- -  U "  t < u'~u'~ > g~p ( < u'~' > cos a sin ? + ( ~ > cos a cos ?) = 0, 

kEI/2 '0' u~O' ~ cos ~,,) O, <u'vu'~>--g~o(<uz >sino~+ < . >cos =- 

,2 OT ' k El~2 i , ~  <u~O'>--g[~osinr < ~ "  >=0, 
<uy > Oy 

( 7 )  

( 8 )  

(9) 

(1o) 

aT ~_ 
< < . ;  , 

< . ; ~  > �9 

OU koE 1/2 < .,~e' > ~ + - - - / - - -  < , 0 '  > - gl~,, cos ~ ~nv < ~ "  > = o, 

aT E 1/2 
a ~  + k~ - - -7-  < u ~ '  > - -g [~  cos~ cos~, < e ''~ > = O, 

aT ~ - -  0" < u ~ "  > ~ + e~ < > = o. 

(ii) 

( 1 2 )  

(13)  

1052 



# 

2 

/ , /  t 

2 "  ! / , 2  

5 

# 

'~, * t  " ~ l i e ~  

. I I /  / g/,/ 

0 8 Ri 0 

y 
> 

# 8 Ri 

Fig. 2 Fig. 3 

Fig. 2. Influence of the angle y and the Richardson number on the in- 
tensity of turbulent momentum (solid lines) and heat (dashed lines) 
transport for flow along a vertical plate: i) y = ~/2; 2) ~/6; 3).0, 
4) -- W/6; 5) -- ~/3; 6) -- ~/2. 

Fig. 3. Influence of the angle of inclination of the surface 
and the Richardson number on the intensity of turbulent momentum 
(solid lines) and heat (dashed lines) transport for transverse flow: 
1) = : - ~12; 2) - ~13; 3) - ~16; 4) 0, 5) w/6; 6) w/3; 7) ~12. 

As a result, the solutions to this system may be given by the Prandtl or Koimogorov equations 
for the tangential turbulent stress and transverse turbulent heat flow [ ( -  2(1--~ 1 + c o s ~ s i n y R - -  1 - -  k__.~ ><, 
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A relationship between the parameters R and Ri may be obtained from the balance equation 
for the turbulent energy, which may be obtained by combining equations (4)-(6): 
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The effects of the thermogravitational forces on the intensity of turbulent momentum 
and heat transport can be characterized using the way in which �9 and ~t depend on the Ri 
number. The values of the constants are chosen in accordance with experimental data for 
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Fig. 4. ~(Ri) (a) and ~tlRi) (b) as a function of the angle 
at which the surface is inclined and the Richardson number 
for longitudinal flow: i) 0, 2) 7/6, 3) ~/3, 4) ~/2, 5) 2~/3, 
6) 5~/6. 

flows constrained by a wall: 
the normalization condition 

= c/k = 0.125, ~% = c%/k = 0.2, k% = k%/k = 0.9; in addition, 

1 ( 2(1__~ )3/~ 
T(Ri  =: 0) =: ~Ft (l~i ~ 0) - c ~ / ~  - 3 k  - ,  = 1, 

which corresponds to the condition that the turbulence scale in the absence of gravity be 
identical to the mixing length s = my (K = 0.4), i.e., k = 1.12, must be satisfied. 

For small values of the Richardson number, the following expansions for ~ and Tt can be 
obtained from Eqs. (14) and (15): 
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We shall now analyze the effects of the thermogravitational forces on the turbulent momentum 
and heat transport for the most characteristic positions of the system in the gravitational 
field: An arbitrarily oriented flow around a vertical heated surface (Fig. la), a transverse 
flow around a heated surface with an arbitrary spatial orientation (Fig. Ib), and a longi- 
tudinal flow around a surface with an arbitrary spatial orientation (Fig. ic). 

2. An arbitrarily oriented flow around a vertical surface (a = 0, y variable). The 
functions T(Ri) and Tt(Ri) are shown for various values of the angle in Fig. 2. As follows 
from (17), a decrease in the intensity of turbulent momentum and heat transport is observed 
for 7 < 0 (rising flow) while an increase is observed for y > 0 (descending flow). The fol- 
lowing asymptotic expressions may be obtained for large values of Ri: 

~= 2 ( 1 - - 7 )  ( Z _ l / 2 R i l / 2 i s i n y R i ) ,  ~ t - -  2 ( 1 - - [ )  %_1/2Ril/2 ' (18) .... 3 k %  

where 
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From the relations given above, it follows that growth in the intensity of momentum and 
heat transport for y > 0. For y < 0, ~t has an analogous asymptotic expression, and conti- 
nues to grow, while the value of ~ becomes negative. The values of the Richardson number 
for which ~ (Ricr) = 0 are given by the formula 

I 20--c~ ~( cos~ ~(I+I/~)+ F~- j 
Ri cr -- sin v 3 ~  sin ~ ~, 

The existence of regimes with negative values of �9 is correlated with the presence of a 
negative coefficient of turbulent viscosity. In such regimes, the energy for supporting 
the averaged flow is transmitted from the fluctuational motion, which is, in turn, gener- 
ated via the work of the thermogravitational forces. Such ("pathological" [i0]) situations 
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are frequently encountered when studying flows with additional sources of turbulent energy. 
Despite the existence of regimes with negative turbulent viscosity, the total generation 
of turbulent energy remains positive in all cases. It should be noted that in the limiting 
case of high Richardson numbers, a regime of thermogravitational turbulence generation in 
which the generation of turbulent energy occurs via shifts in the average velocity may be 
neglected. In these cases, the intensity of turbulent momentum and heat transport are given 
by (18). As follows from these equations, the asymptotical relations for ~t with 7 > 0 
and 7 < 0 converge, which should lead to similar relations for the heat transfer Nu(Gr) for 
ascending and descending flows. In this case, the expression for the turbulent heat flow 
in the boundary layer is of the form 

2(1---~) X_,12c~p (g~p),l~lz]~f_g _ a/2" (19) qt - 2-- 2 3k k~ 

From Eqs. (19) for the temperature profile in the turbulent boundary layer (for which 
we may set qt = qw for both ascending and descending flows on a vertical surface), the "1/3 
law" 

T+ =-: T + o - - A t ~ - I / 3  ( 2 0 )  

holds for the region where free convection dominates. Such temperature distributions were 
obtained for descending (y = ~/2) and ascending (y = - ~/2) flows in [11-13]. 
Note that temperature distribution (20) yields a function of the form Nu ~ Gr I/4 for the 
heat transfer as a function of the Grashof number (this relation is in agreement with the 
well-known equations for calculating the heat transfer in the free-convection regime on 
vertical surfaces. 

3. Transverse flow around an arbitrarily oriented surface (y = O, ~ variable). It 
follows from the asymptotic expansions for �9 and ~t at small Richardson numbers (17) that 
the intensity of turbulent momentum and heat transport decreases for ~ > 0 (stable stratifi- 
cation), and, likewise, it increases for a < 0 (unstable stratification). The following 
relations hold for Ri + ~: 
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It follows from (21) that an increase in �9 and ~t is observed for both ~ > 0 and ~ < 0, 
except for the case ~ = ~/2. This behavior of the functions P and ~t is supported by the 
calculations shown in Fig. 3. In the case a = ~/2, which corresponds to flow on a horizon- 
tal surface with stable stratification, there is a critical Richardson number Ricr at which 
complete damping of the turbulence occurs. The existence of Ricr is supported by the ex- 
perimental data given in [I, 14]. 

Note that as the Richardson number approaches the critical value, the intensity of 
turbulent heat transport is damped out more rapidly than the intensity of turbulent mo- 
mentum transport, which results in a sharp increase in the turbulent Prandtl number Pr t = 
vt/a t. In the remaining cases with ~ ~ ~/2, as Ri + ~, the turbulent Prandtl number ap- 
proaches a constant given by the following equation 
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cr 

Pri~ =~ I + k--~ sin ~% 

where X is defined as in Eq. (22). 

From an analysis of the turbulent energy balance equations (16), it follows that a 
thermogravitational turbulence creation regime comes into existence at all values of the 
angle ~ a v/2. For these regimes, we obtain "1/3 laws" for the mean temperature and velo- 
city distributions of the form (20) in the boundary layer [2, 14]. 

4. Transverse flow around an arbitrarily oriented surface (7 = ~/2, ~ variable). From 
an analysis of the equations for the intensity of turbulent momentum and heat transport at 
small values of the Richardsonnumber (17), it follows that the action of free convection 
can lead to either an increase or a decrease in the intensity of turbulent transport, de- 
pending on the orientation of the motion with respect to the gravitational force and the 
sense of heat flow (heating or cooling). 

The functions f(Ri) and ~t(Ri) are shown in Figs. 4a and b. For Ri > 0, a decrease 
in the intensity of turbulent transport relative to the case discussed above (flow on a 
vertical surface (g = 0)) is observed as the angle increases. In the region ~/4 ~ ~ ~3~/4, 
a monotonic decrease in the intensity of turbulent transport, while for 3~/4 ~ ~ < ~, the 
values of �9 and ft initially decrease as the number Ri increases, and then begin to in- 
crease. 

The flow for Ri < 0 for 0 < g < ~/2 is characterized hy the presence of negative vis- 
cosity. For ~ > ~/2, the flow becomes turbulent, which leads to a large increase in f and 
~t with increasing Richardson number. It should be noted that for all ~ > 0 and Ri < 0, 
a thermogravitational turbulence creation regime, which is most prominent for angles 0 < g < 
~/2, comes into existence. 

Thus, the case of longitudinal flow around an inclined surface includes all of the 
effects (the existence of Ricr, the negative turbulent viscosity coefficient, thermogravita- 
tional turbulence generation) obtained when discussing the other special cases. 

5. In conclusion, we note that for flows in the thermogravitational turbulence genera- 
tion regime which take place on vertical and inclined heated surfaces, for upward flow on 
a vertical surface and one inclined at an angle = < v/3 (and for flow on a horizontal sur- 
face with unstable stratification) the heat transport as a function of the Richardson num- 
ber is given by the formula <u'x%'> ~ Ri 1/2, which corresponds to a relationship of the 
form qt ~ Pc~(g~ )I/~' 12 JST/8y'J ~2 and leads to a"i/3 law" for the temperature distribution 
in the averaged flow, and, accordingly, to a relationship of the form Nu ~ Gr I/4 between 
the heat transfer and the free convection parameter. 

It should be noted that the conclusion about the existence of negative turbulent vis- 
cosity was obtained under the condition that the system under discussion is in an equili- 
brium state, i.e., that it is possible to neglect the influence of turbulent diffusion and 
convection in the equations for the second moments. Taking diffusion and convection into 
account when solving the complete equations of turbulent transport may lead to some correc- 
tions to the results obtained above. 

NOTATION 

x, y, and z, Cartesian coordinates; U i and T, averaged values of the velocity and tem- 
perature; ui', %', p', fluctuations in velocity, temperature, and pressure; vt and a t , co- 
efficients of turbulent viscosity and thermal conductivity; Bp, thermal expansion coeffi- 
cients; E, fluctuation energy; 6, thickness of the turbulent layer; s turbulence scale; 
L - cppU3,/Bpgqw, Monin-Obukhov scale; U, = s dynamical velocity; c%, c, k%, and k, 
constants; T+ = (T - Tw)cppU,/qw, temperature in universal coordinates, g = y/L, universal 
coordinate; Ri = g~p ST/By / (SU/Sy) 2, Richardson number; Nu = qw6/(i&T), Nusselt number; 
Gr = g~pqw64/(~v2), Grashof number; and R = g~pl(ST/Sy) / (k~E1/2• 
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COUPLED SIMULTANEOUS HEAT AND MASS TRANSFER 

IN MULTICOMPONENT TWO-PHASE MIXTURES 

L. P. Kholpanov, E. Ya. Kenig, 
and V. A. Malyusov 

UDC 536.423.4:532.522.2 

A method is proposed for calculating the parameters of simultaneous heat 
and mass transfer in a multicomponent two-phase gas-liquid system, this 
method being based on solving the system of differential equations of con- 
vective heat transfer and convective diffusion. 

An important item in research concerning heat- and mass-transfer processes is develop- 
ment of a theory for simultaneous heat and mass transfer in multicomponent two-phase mix- 
tures. Particular attention is paid to solution of this problem as a coupled one. 

A method of solving such problems will be outlined here on the example of heat and 
mass transfer in a multicomponent two-phase gas-liquid system which flows through a verti- 
cal channel in the descending parallel-flow mode. 

Let the x axis run along a channel wall and the y axis run perpendiclar to it. The 
thermal diffusivity of each component and the coefficients of multicomponent diffusion are 
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